Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice
نویسندگان
چکیده
منابع مشابه
Maximal Oxygen Consumption Is Reduced in Aquaporin-1 Knockout Mice
We have measured maximal oxygen consumption ([Formula: see text]O2,max) of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9, and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that [Formula: see text]O2,max as determined by the Helox technique is reduced by ~16%, w...
متن کاملReduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice.
Aquaporin-1 (AQP1) water channels are expressed widely in epithelia and capillary endothelia involved in fluid transport. To test whether AQP1 facilitates water movement from capillaries into the peritoneal cavity, osmotically induced water transport rates were compared in AQP1 knockout [(-/-)], heterozygous [(+/-)], and wild-type [(+/+)] mice. In (+/+) mice, RT-PCR showed detectable transcript...
متن کاملLung fluid transport in aquaporin-1 and aquaporin-4 knockout mice.
The mammalian lung expresses water channel aquaporin-1 (AQP1) in microvascular endothelia and aquaporin-4 (AQP4) in airway epithelia. To test whether these water channels facilitate fluid movement between airspace, interstitial, and capillary compartments, we measured passive and active fluid transport in AQP1 and AQP4 knockout mice. Airspace-capillary osmotic water permeability (Pf) was measur...
متن کاملPropofol Anesthesia Is Reduced in Phospholipase C-Related Inactive Protein Type-1 Knockout Mice.
The GABA type A receptor (GABAA-R) is a major target of intravenous anesthetics. Phospholipase C-related inactive protein type-1 (PRIP-1) is important in GABAA-R phosphorylation and membrane trafficking. In this study, we investigated the role of PRIP-1 in general anesthetic action. The anesthetic effects of propofol, etomidate, and pentobarbital were evaluated in wild-type and PRIP-1 knockout ...
متن کاملGastric acid secretion in aquaporin-4 knockout mice.
The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (-/-) mice deficient in AQP4 protein. -/- Mice had grossly ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Physiology
سال: 2016
ISSN: 1664-042X
DOI: 10.3389/fphys.2016.00347